

January 2022

Newsletter

The latest news, views, and announcements

INSIDE

__

Economics of Code
Refactoring

Refactoring old code is a
cost-effective method of

reducing long term IT
budget dollars

__

Control/DCD 2.4

The latest Release of
Control/DCD introduced

new features such as
Enhanced Compile Mode
and the Special Narrative

__

Announcing New
Webinars for 2022

Marble Computer will
provide 1-hour webinars

on Code Refactoring and
enhancements for COBOL

Version 4.2.

__

The Observer

Thoughts From Marble
Computer, Inc. CTO

Marshal Crawford

__

 The Economics of Code
Refactoring

When deciding to refactor or not, you should consider the costs, risks and benefits of
doing the refactoring. This will tell you when it's worthwhile to start refactoring, and
when it would be wise to stop.

Costs:

Cost of Doing the Refactoring:

This is the cost of changing the code: renaming data fields or changing
copybooks; copying code and moving action statements to align with the
logical program flow. Removing dead code; extracting common or
reusable code to a separate location within the program; or any of the other
valid refactoring moves. Typically, this cost is low, as it's not hard to make a
few syntactical changes to code. Use of IDE software reduces the time and
cost of refactoring code.

Cost of Testing the Change:

Any change you make to the code may introduce bugs, and so must be
thoroughly tested. With a complete set of automated regression tests, this
cost will be very low because you're leveraging the testing investment
made when the tests were written. However, without automated testing, the
testing costs can be significant.

Cost of Updating Tests and Documentation:

Refactoring may change the current set of testing protocols, or even
introduce new requirements. The development of a new test bed and user
classes may take development time. This can be a non-trivial cost to
projects that maintain a comprehensive set test beds.

Risks:

Risk of Introducing Bugs (not caught by testing):

If regression testing falls short of perfection, there's a risk that bugs
introduced during the change may be released into production, causing
loss of business data. The political repercussions of such a slip can be
severe. However, if your test beds are good this risk is minor.

In Summary:

Cost and Risk of Refactoring tend to be low, as most IT organizations have
good regression test software. Also, the "size" of refactoring projects tends
to be smaller, as the code tends to maintain good conceptual structure,
even in the face of change.

Benefits:

Adding new features no longer corrupts the system's structure:

Optimizing the maintenance process to minimize the visible changes to the
source code must, as with any optimization, compromise something else: In
programming, what gets compromised is the readability, maintainability,
and logical structure of the system being maintained. So, over time, a
system maintained without refactoring will become unmaintainable, and
must be scrapped and rewritten from scratch. Refactoring avoids the costs
of working with unmaintainable code, and the eventual cost of replacing the
system.

Improves programmer's understanding of the system:

Refactoring produces shorter simpler methods. It's less work to understand
the smaller amount of code that needs to be changed to implement any
given function.

Refactored code is easier to test if that was one of the goals of the refactoring.

Well Factored Code is easier to maintain!

It's
 easier to add new functionality to
 easier to test
 easier to find and fix bugs in

And easier translates directly into faster ... fewer man hours, costs less.
Spending a little overhead refactoring all the time means an overall success
rate increase.

Marble Computer, Inc.

New Webinars For 2022
Marble Computer will be hosting 3 Webinars for Q1 2022. We
will be focusing the webinars on Code Refactoring and COBOL
Release 4.2 as that compiler goes End of Service on April 30,
2022.

Tentative dates and times are as follows:

Thursday January 27, 2022, 11:00 AM PST – Code Refactoring

Thursday February 24, 2022, 11:00 AM PST – Code Refactoring

Thursday March 24, 2022, 11:00 AM PDT – The fate of COBOL Version
2.4. and the use of Enhanced Compile mode

 Control/DCD
Release 2.4

The latest release of Control/DCD
has added new features that are
monumental design changes for
current and future customers.

Enhanced Compile Mode – adds a
hierarchal flowchart, new COBOL
Analytics and a “Special Narrative”
for data field tracking.

Independent Mode – produces the
Control/DCD reports and analytics
without a COBOL Compiler.

A complete reformatting of
significant reports to fit within the
80-column limits of ISPF.

Summary reporting on programs
that may need modifications for
migration to COBOL compiler 6.2
or 6.3. This includes Invalid Data
errors, Call Parameter arguments,
missing initialized values, Packed
and Binary Data issues.

Please contact sales at 800-252-
1400 for more information.

The Observer

Marble Computer is celebrating 39 years of commitment to the Data
Correlation and Documentation software product referred to as DCD.
During the past 39 years we’ve modified the original code several times
with new releases for DCD II, DCD III, DCD IV, and Control/DCD.
Control/DCD Release 2.4 represents a 2-year undertaking. We’ve
modified the look and feel of the product. We’ve added several new
features that support Code Refactoring. Control/DCD’s output now fits on
a single ISPF page. We’ve integrated our analytics and narrative within the
standard COBOL compiler listing. Control/DCD Release 2.4 represents a
major investment for our company, our customers, and future clients.

